Overview Overview Search Search Up Up
Category: Technical Papers
Order Files by:
Default | Name | Author | Date | Hits
folder.png Technical Papers Files: 20
 
info Only registered and logged in users can download files from this category.
Files:
pdf.png 2012 - July - T Godber - Cars and Trains Dont Mix



Size 251.23 KB
pdf.png 2012 - July - P Hughes - You cant get good train control



Size 72.33 KB
pdf.png 2012 - July - Blaauboer - SIL 4 Interlocking based on COTS hardware

Michiel Blaauboer MSc Technical Manager

Movares

Nowadays, the majority of proprietary electronic interlocking systems are built with dedicated hardware. The interlocking industry is a relatively small market compared to other fields of industry; innovation is expensive, and therefore sometimes 'slow'. Besides that, after installation the manufacturer must be contracted for maintenance and especially alterations, creating a 'vendor lock'. The Movares Eurolocking system has the goal to eliminate these issues by using standard PLC's (commonly used in the process industry).

Eurolocking is a SIL 4 PLC interlocking completely based on Commercial of the Shelf (COTS) hardware components. Any (SIL 4) PLC can be used in this concept to engineer an open system. Only the logic inside the system is dedicated to the railway environment.

The (COTS) components are applied worldwide in many industries. The scale of quantity for these components is bigger than the one for dedicated interlocking hardware. As a result this has an effect on the final price and R&D is going at a faster pace. Another improvement is the decoupling of hardware and engineering. In principle the application is based on open code.

As modern PLC's support many open interfaces, modules can be created to directly interface with a wide range of other systems. However, the use of dedicated protocols is still possible.



Size 3.25 MB
pdf.png 2011 - November - Why do track ballast machines have windows by adam morris 20-7-11

Presentation only.



Size 4.11 MB
pdf.png 2011 - March - Wust and Hjort - Wheres The Train?

Derel Wust BE (Hons) MIE Aust, CPEng, GAICD

4TEL Pty Ltd

Graham Hjort BE (Hons), Grad Dip (Rail Sig)

4TEL Pty Ltd

GPS based technology is now common place in everyday life with GPS receivers standard as part of many phones and satellite navigation fast replacing maps for most motorists. GPS has been standard installation on all trains operating in NSW since the mid 1990's, with the introduction of CountryNet radio. Train GPS positions are transmitted back to the control centre as part of the basic CountryNet functionality. The Train Order Computer system in NSW has been successfully making use of these GPS positions for 10 years, to ensure the trains actual location is consistent with the Authority it holds.

One challenge has been the ability to provide train location information to remote field sites or staff where it could be of great value. Continued improvement in technology has not only made this possible, but practical as well.

Improved awareness in the position of trains when working in and around the rail corridor, or provision of greater detail into train planning and reporting functions can be achieved through the use of GPS based train location data.

Inherent limitations in the reliability of data delivery and GPS position accuracy will limit the use of GPS based train location information for safety related functions. However, the opportunity now exists for making use of train GPS data for improving the efficiency and safety of the rail network.



Size 424.61 KB
pdf.png 2011 - March - Taylor - A System for Broken Rail Detection Independent of the Signalling System

Rebecca Taylor B. Eng (Hons) Mech

Signals Engineer, Public Transport Authority of Western Australia

This paper considers the problem of detecting breaks in a rail. It provides a review of types of rail break, which types need to be detected and why their detection is necessary. It also tackles the question of where the responsibility for detecting broken rails lies.

Maintenance and management of the rail and track assets are the responsibility of the track maintenance group. Hence detection of conditions relating to the rail must therefore fall within that scope. Further to this, Signalling systems cannot be relied upon to detect all types of rail break. Signalling systems employing communications based train position detection or axle counters have no mechanisms whatsoever for detection of broken rails.

This paper proposes a possible system that may be able to provide a better solution for detection of broken rails than traditional signalling systems and can do it independently of the signalling system.



Size 233.55 KB
pdf.png 2011 - March - Shenton - Video Train Positioning

Richard Shenton MIRSE

Reliable Data Systems

Since commercial railways began around 200 years ago, passing trains have been detected from the trackside. Now we have entered the era of train based positioning. The cost of installing, operating and maintaining track circuits and other infrastructure equipment is driving the introduction of train based alternatives. Whilst GPS is widely used for train positioning on low density lines, it cannot on its own meet the exacting requirements of train control. There is a  need for a new generation of location system which can provide continuous positioning on individual lines with high  integrity and low cost.

This paper describes the operation of VTPS (Video Train Positioning System) a cab mounted vision system providing reliable positioning at low cost. The system uses image processing technology to provide the full range of positioning requirements for the operational railway, including odometry, spot location and track discrimination. The paper details the techniques that are employed and how these are used to provide accurate results with high integrity. It describes how the individual functions are combined to provide a complete positioning capability, supporting applications such as train control, platform stopping, standstill detection and train integrity.



Size 3.36 MB
pdf.png 2011 - March - Nikandros - Signalling So Far As Is Reasonably Practicable

George Nikandros BE CPEng RPEQ FIRSE MIEAust MACS

Chairman aSCSa1

In Australia, both the model rail safety legislation and the model workplace health and safety legislation require the reduction of safety hazards and risks so far as is reasonably practicable. Railway signalling evolved both as a profession and as a technology because of accidents and the realisation that safety with respect to the movement of trains over a network needed improvement. But will the signalling systems in use or planned satisfy the "so-far-as-is- reasonably-practicable" test; a test that is determined by a Court with the benefit of hindsight and the influence of public opinion? Demonstrating compliance with rail industry signalling standards may not be a sufficient to demonstrate that the railway operation is safe so far as is reasonably practicable. This paper discusses the SIL concept and what is needed to strengthen the argument for so far as is reasonably practicable.

 



Size 234.74 KB
pdf.png 2011 - March - Morris - Track Maintenance Impacts of Train Detection Systems or Why Ballast Regulators Have Windows

Adam Morris BE(Hons), Dip PM, MIEAust, MAIPM

Abigroup Contractors

When considering railway signalling, track or structures, it is important to consider that each of these are merely sub-systems of the larger system we call the railway. The configuration of any one system can impact on any other and the often fraught relationship between track and signals is certainly no exception.

The various train detection systems all impact in different ways on the track and in particular track maintenance activities. The need to supply signalling support to track maintenance is often overlooked in considering the whole of life costs of train detection systems.

There can scarcely be a signal engineer or technician without a horror story of the damage wrought by clumsy, unprepared track crews, especially that dreaded combination of ballast tamper and regulator. But is it all their fault? Perway crews know that this equipment is deliberately put in the worst possible location or cunningly camouflaged just to annoy them.

This paper examines the impacts between the various types of train detection systems, including track circuits and axle counters and other ancillary track mounted or near-track equipment on track maintenance practices. It also includes a brief commentary on the case for the need to detect broken rails.



Size 229.28 KB
pdf.png 2011 - March - Moore - Understanding Signalling Overlaps

Trevor Moore B.Eng., MBA Technology Management, FIE (Aust), FIRSE

Australian Rail Track Corporation

signal at danger. This paper details the different types of overlaps, how they are determined and how they can be applied in a signalling design for a specific network. Network characteristics for Urban areas are typically different to those of Interurban areas and country areas often resulting in different application of overlaps.

The overlaps become an important part of the signal locking principles. This ensures the separation of trains in complex situations.



Size 112.91 KB
pdf.png 2011 - March - Cox - A Review of Axle Counter Application; Reset Restore Methods, Their History, Their Current Application and the Future

Simeon Cox MIET AMIRSE

Parsons Brinckerhoff Australia Pty Ltd

Axle counters have many advantages as a train detection system but in comparison with track circuits they are complex.  Initial use for single sections, typically replacing absolute block or single line working systems proved very successful but as their benefits were realised they have been applied to more and more intensive applications. These intensive applications, which were previously the domain of track circuits, have seen a number of hazards arise that were not previously present with the use of track circuits. These hazards may have always have existed such as the loss of broken rail detection but are exacerbated by removing track circuits or may be specific to the use of axle counters such as reset and restoration. These hazards have been managed in many ways by different railway administrations; this paper will compare a selection of  applications, the technology and principles behind the mitigation of those hazards.

The paper will also consider the evolution of the design of the axle counter from single sections, to multiplesection finally to advanced forms that communicate using open communication networks across huge distances but at the same time are closely integrated with the interlocking and control system to provide enhanced diagnostic and operational information that can be used to improve system reliability and performance.



Size 598.29 KB
pdf.png 2011 - March - Clendon and Skilton - Axle Counters - The New Zealand Experience

James Clendon BE Hons. (Electrical and Electronic)

CPEng, MIPENZ

KiwiRail

John Skilton BE Hons. (Electrical and Electronic)

CPEng, MIPENZ, MIRSE

KiwiRail

In New Zealand axle counters are now the preferred method of train detection on electrified lines. This paper examines the historical use of axle counters on the New Zealand railway network and looks at some of the reasons why this decision has been made.

Axle counters offer a number of advantages over track circuits including the ability to operate over large distances and under environmental conditions that are not suitable for track circuits. This paper also looks at some of the disadvantages of track circuits and the operational and technical mitigations that overcome these disadvantages.

Additionally this paper investigates some of the interfaces required to ensure that axle counters are able to provide an operationally robust method of train detection. These interfaces include those with vehicles operating on the railway and those with interlocking equipment and control systems.



Size 6.87 MB
pdf.png 2011 - March - Broderick & Lemon - Case Study : Application of CBTC on DLR

Eugene Broderick GradDipRailSig AMIRSE

Laing O’Rourke Australia

Stephen Lemon MSc MIEAust CPEng RPEQ MIRSE

Laing O’Rourke Australia

The Docklands Light Railway (DLR) in London opened in 1987 with an ATP/ATO signalling and control system, with no mainline signals, and technology that included VDU-based train control, SSI interlockings, reed RT-type track circuits, and audio frequencies injected into the running rails and cable loops, to provide 'authority to proceed' and 'speed monitoring' functionality respectively.

As a result of the need to increase the capacity of the railway, both in terms of the geographical area covered and the throughput of trains, a new ATP/ATO system was introduced during the mid 1990s, based around moving-block  Communications-Based Train Control (CBTC) technology. The signalling and control functionality of this CBTC system relied upon continuous data communication between the trains and centralised interlocking and control systems via a series of trackside loop cables, supported by an underlying system of axle counters.

The moving-block system was first implemented on a new extension to the railway, and subsequently as a replacement for the existing fixed block system on the entire railway, and it has been subject to a number of major and minor upgrades to the equipment and software since that time.

From the early days of the DLR, there were issues associated with the operation and maintenance of the signalling, control and communications systems, which were predominantly electronic and software-based, at a time when the experience of staff in the UK rail signalling industry was largely based around more prevalent mechanical and electrical systems.

With the transition to a more complex CBTC system, the technical and operational issues were compounded. In particular, the ongoing upgrades to the system required robust processes to manage the impact of changes, with a focus on strict configuration control, systems assurance and approval.



Size 1.75 MB
pdf.png 2011 - July - Zhang & Baulderstone - Rail Car Depot Infrastructure -The Dry Creek Experience

Paul Zhang BE (Elec), GradIEAust

Sinclair Knight Merz

David Baulderstone BE (EEE), GradIEAust

Sinclair Knight Merz

The former Adelaide Rail Car Depot has been relocated from Adelaide to a new site at Dry Creek to make way for the new Royal Adelaide Hospital. This new depot not only provides improved train maintenance and train washing capabilities, but also infrastructure and train control systems to support the effective movement and control of suburban rollingstock throughout the depot.

This paper provides an overview of the project, as well as a technical review of the following topics:

Redevelopment of the Signalling System at Dry Creek, including

  • Upgrade of the Gawler Mainline (Dry Creek section) relay interlocking to a computer based interlocking system to accommodate additional signalling infrastructure
  • Interface redesign between Adelaide CTC and Dry Creek Mainline interlocking, ARTC and Dry Creek Mainline interlocking, Mainline interlocking and RCD
  • Define boundaries for CTC and Depot Control
  • Power Distribution Design at Dry Creek RCD
  • Transformer, generator and switchboard architecture
  • Underground conduit and pit network
  • Power monitoring
  • Dry Creek Project Design Challenges
  • Coordinating with multiple contractors
  • Introduction of new signalling equipment on Adelaide Broad Gauge Network, such as Westrace, M23A and 84M point machines
  • Interfacing Design


Size 6.56 MB
pdf.png 2011 - July - Williams - 2016 Train Services, The Transport Foundation of the 30 Year Plan for Greater Adelaide

Mark Williams B.Eng (Civil), MEngSc

South Australian Government

Department for Transport Energy and Infrastructure

The South Australian and Australian Governments are jointly investing $2.6 billion into Adelaide's public transport system between 2007/08 and 2018/19.

To meet Adelaide's population and land use targets there has been a fundamental change in South Australia's planning strategy outlined in the 30 Year Plan for Greater Adelaide, including significant increases in population density adjacent to train stations.

Although there is much interest in the various technical aspects of the investment, that range in a scale factor of a million from the longest bridge in South Australia at 1.2 kilometres to dipped weld correction of 1.2 millimetres, unless the investments deliver a substantial increase in public transport use in Adelaide, and are a catalyst in the development of higher densities within the Adelaide urban area, the public transport investments will be rightly judged by the community as a failure.

At the core of the train service improvements is the aim of providing a weekday 15 minute 7am to 7pm interval service to most railway stations, with key interchanges having a peak service interval of less than 10 minutes.

This paper describes the process that was followed to develop an affordable, feasible plan for the development of train services that is predicted to result in a substantial increase in public transport patronage.



Size 10.1 MB
pdf.png 2011 - July - Szacsvay - The Elephant and the Flea - Living with Traction Return

Paul Szacsvay BE (Elec) M Admin FIRSE

Rail Corporation NSW

Traction supply and distribution systems, electromagnetic interference from AC traction supply systems, electrolysis from stray DC traction currents, and interference between in-rail traction currents and track circuits have all been well documented in published literature. Traction current return systems and the issues involved with them have not been so well served.

Focussing mainly on practices relevant to Australasian railway systems, this paper gives an overview of the configuration of typical DC and AC traction supply and return systems, the requirements for their safe and reliable operation, and their interaction with track circuits and other infrastructure on and near to the railway.

It concludes with a brief discussion of the potential benefits of adopting train detection systems which are not dependent on electrical contact with the running rails. In addition, since a really detailed study of the issues relating to traction return is beyond the scope of a paper of this length, a reading list of useful reference books and articles is provided for those seeking to explore any of the topics in more depth.



Size 474.3 KB
pdf.png 2011 - July - Sundareswaran - Sulphide Junction - Practical Issues in Rail Regeneration

Kaniyur Sundareswaran M.S., FIRSE, CEng., FIETE, MIEAust, CPEng.,

Aurecon (NovoRail Alliance)

Sulphide Junction Signalling System was successfully commissioned on 27th February 2011.

The system existing at the start of the project was a 28 year old relay interlocking system comprising of a distributed interlocking architecture performing the core interlocking functions within the Relay Room. The higher aspects and train stop controls are managed locally within the distributed locations.

Remote controlled from Broadmeadow using SCADA 2000 links, the system has an Emergency Local Control Panel installed in the Traffic Room of the Relay Room building.

As part of providing improved access to the EDI Downer workshop (Waratah Trains assembly and testing), a heart transplant of the relay interlocking to Microlok in the relay room was planned, mainly to overcome the restrictions placed by "no more than 2 day possession" rules. The external distributed interlocking was left as is, with minimal modifications to accommodate additions/changes, to keep costs down.

The aerial photograph below shows the Sulphide Junction Rail Corridor and the access to EDI Downer workshops.



Size 730.63 KB
pdf.png 2011 - July - Ross - Rail regeneration - what are the risks?

Alan Ross MSc, BSc, Grad Dip OSH, CMIOSH

Principal, A & K Ross Associates Pty Ltd (AKRA)

Rail regeneration in Australia is gaining some much-needed momentum, at long last. There are improvement schemes and upgrades all over the country, from the mining railways of WA to Regional Rail Link in Victoria, not forgetting the Adelaide Electrification Project.

Many of these projects have in common that they are undertaken in a live rail environment alongside an operating railway. It is not possible to shut down operating railways for extended (or even short) periods. It is also not uncommon for signalling systems to be shut down at certain times in projects to facilitate installation and commissioning of new equipment. The railway runs with a degraded mode of safe working, whilst trains continue to operate 'normally'. Such situations also arise in unplanned situations. Finally, the question of protecting track workers: have systems for protection kept up with other railway developments?

The risks associated with such a scenario are obvious and have resulted in a number of serious incidents. This paper will describe some of the incidents, highlight some of the lessons learned and consider ways in which the introduced risks can be eliminated or significantly mitigated. With the statutory obligation on rail operators to eliminate risks or, where that is not reasonably practicable, to reduce risk so far as is reasonably practicable, what is the role of the Regulator and are they up to the task?



Size 5.91 MB
pdf.png 2011 - July - Allan - The Application of Distributed Architectures on Vital Interlocking Systems

Dwayne Allan B Eng (Hons), PGradCert (Railway Signalling), AMIRSE, MIEAust, CPEng

Siemens Ltd.

Distributed control systems have their heritage in manufacturing, process or other forms of dynamic systems in which the control of sub-systems is distributed throughout the system but controlled by one or more programmable logic controllers (PLC's) in a central location. This philosophy is often applied in process environments with equivalent SIL requirements to railway signalling systems.

This paper will outline the use of distributed architectures in a railway signalling context, in particular the system flexibility and resultant changes in system design and requisite cost implications for railway authorities when used as vital interlocking systems. Sample system layouts using traditional and distributed architectures will be reviewed as well as the benefits and limitations of the each system application.

The advancements in PLC technology its application in safety-critical systems will be reviewed. The open data communications functionality and the streamlined programming techniques used as part of industrial automation applications will be outlined. How these advancements and techniques are used in a railway signalling interlocking application will also be discussed. In particular, the use of function blocks and function calls to create a library of signalling principles will be addressed.

An overview of the significant benefits of applying industrial automation philosophies to railway signaling projects will be provided. The impact of these benefits on the Total cost of Ownership of distributed architecture systems using industrial automation technology will also be discussed.



Size 5.03 MB
pdf.png 2011 - July - Burrows & Stringer - Folding Signal Posts - Myth or Practical Solution

Stephen Burrows CEng MICE

Adelaide Rail Leader, Aurecon

Peter Stringer FIRSE

Signalling Accreditation Manager, Aurecon

Since time immemorial, signalling systems have made use of stiff, upright, highly robust and immovable signal posts for good practical engineering reasons. They should be able to withstand environmental conditions like rain, wind and snow without excessive deflection and still remain upright to support that vital signal arm or head with the associated aspect.

Back in the good old days, signal engineers didn't even bother with the mechanical or civil engineer to help with the signal post or foundation design! More recently, the mechanical and civil engineers have got involved and we now have good foundations and strong posts that satisfy the various railways' specifications.

Times have also changed with regards to Operational Health and Safety (OH&S). Legislation hasn't always been so onerous and signalling personnel were routinely permitted to work two metres above the ground without a safety harness. It was nothing to expect a maintainer to climb a 12.5m tall lattice post to maintain or repair a piece of mechanical equipment such as pulleys or cranks or replace a light bulb which had expired.

So in today's safety conscious environment and with the widespread introduction of 25kV overhead line equipment above the track, is it really desirable to have maintenance staff working at heights and in close proximity to lethal electrified equipment? Somewhat surprisingly, the answer to this question is "yes" and the vast majority of new signals continue to be installed on conventional straight posts.

Several alternative solutions are available which allow all maintenance activities to be undertaken at ground level using folding, hinged or sliding posts. These solutions also provide significant safety benefits yet the signalling industry is slow to embrace them. Is there genuine justification for this reluctance to change or is the signalling industry simply intolerant to change?



Size 7.04 MB

Events Calendar

Cart

The cart is empty

Log in/Register

Please note that new passwords must include a capital letter and a numeral.

Join IRSE Australasia to get member prices and features.

Search this site